These experiments examined relationships between initial osmolality and carbohydrate (CHO) composition of an infused solution and osmolality and water and CHO absorption in a test segment. A triple-lumen tube with a 10-cm mixing segment and a 40-cm test segment was passed into the duodenojejunum. The infusion port was approximately 10 cm beyond the pyloric sphincter. Perfusion solutions were hypotonic (186 mosmol/kg; solution A), isotonic (283 mosmol/kg; solution B), and hypertonic (403 mosmol/kg; solution C). All solutions contained 18 meq Na+ and 3 meq K+. In the mixing segment, osmolality increased 83 mosmol/kg and decreased 90 mosmol/kg for solutions A and C, respectively. Corresponding changes in the test segment were an increase of 60 mosmol/kg and a decrease of 34 mosmol/kg. The osmolality of solutionB did not change. In the test segment, mean osmolality and water and total solute fluxes were not significantly different among solutions, but solution C produced 27% greater fluid absorption than did solution A. When net fluid movement from mixing and test segments was determined, solution A produced 17% greater fluid absorption than did solution C. The mean increases in plasma and urine volumes over the 80-min test period were not significantly different. In the test segment, water flux correlated with CHO and Na+ fluxes but not with osmolality. In conclusion, 1) significant differences in solution osmolality were eliminated within the proximal duodenum and 2) perfusing 6% CHO solutions with osmolalities ranging from 186 to 403 mosmol/kg did not produce significant differences in fluid homeostasis (plasma volume) at the end of an 80-min test period.