Hyperosmolality occurs when there are defects in the two major homeostatic mechanisms required for water balance-thirst and arginine vasopressin (AVP) release. In this situation hypotonic fluids are lost in substantial quantities causing depletion of both intracellular and extracellular fluid compartments. Patients with essential hypernatremia have defective osmotically stimulated AVP release and thirst but may have intact mechanisms for AVP release following hypovolemia. Hyperosmolality can also be seen in circumstances in which impermeable solutes are present in excessive quantities in extracellular fluid. Under these conditions there is cellular dehydration and the serum sodium may actually be reduced by water drawn out of cells along an osmotic gradient.Hyposmolality and hyponatremia may be seen in a variety of clinical conditions. Salt depletion, states in which edema occurs and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) may all produce severe dilution of body fluids resulting in serious neurologic disturbances. The differential diagnosis of these states is greatly facilitated by careful clinical assessment of extracellular fluid volume and by determination of urine sodium concentration. Treatment of the hyposmolar syndromes is contingent on the pathophysiology of the underlying disorder; hyponatremia due to salt depletion is treated with infusions of isotonic saline whereas mild hyponatremia in cirrhosis and ascites is best treated with water restriction. Severe symptomatic hyponatremia due to SIADH is treated with hypertonic saline therapy, sometimes in association with intravenous administration of furosemide. Less severe, chronic cases may be treated with dichlormethyltetracycline which blocks the action of AVP on the collecting duct. PMID: 6246683 [PubMed – indexed for MEDLINE]