This investigation examined the distinct and interactive effects of initial hydration state, exercise-induced dehydration, and water rehydration in a hot environment. On four occasions, 10 men performed a 90-min heat stress test (treadmill walking at 5.6 km/h, 5% grade, 33 degrees C, 56% relative humidity). These heat stress tests differed in pretest hydration [2 euhydrated (EU) and 2 hypohydrated (HY) trials] and water intake during exercise [2 water ad libitum (W) and 2 no water (NW) trials]. HY+NW indicated greater physiological strain than all other trials (P < 0.05-0.001) in heart rate, plasma osmolality (Posm), sweat sensitivity (g/degrees C.min), and rectal temperature. Unexpectedly, final HY+W and EU+W responses for rectal temperature, heart rate, and Posm were similar, despite the initial 3.9 +/- 0.2% hypohydration in HY+W. We concluded that differences in pretest Posm (295 +/- 7 and 287 +/- 5 mosmol/kg for HY+W and EU+W, respectively) resulted in greater water consumption (1.65 and 0.31 liter for HY+W and EU+W, respectively), no voluntary dehydration (0.9% body mass increase), and attenuated thermal and circulatory strain during HY+W.