Various physiological mechanisms regulate sodium and water balance in the human body. These processes achieve acute and chronic sodium regulation and the simultaneous or sequential changes can be explained using a single physiological model. Steady intracellular water and osmolality is necessary for cell membrane integrity and cellular processes. Body fluids protect circulatory blood volume by altering Na + and water balance. This is the most vital homeostatic function of the body. Changes in ECF volume are sensed by various cardinal sensors. Physiologically, the main aim of Na + and water balance is to permit variable salt and water intake without large fluctuations in blood pressure or volume status. Homeostatic processes act in an integrated fashion to protect against any perturbations. Characteristically, these mechanisms are sequential as well as parallel. These may be synergistic or antagonistic to each other. Rapidity, sensitivity and potency of these powerful feedback systems differ. Various physiological and pathological insults determine the magnitude of response of these systems.